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Comprehensive reliability analysis of the support structure of a floating offshore wind turbine is implemented by 

utilizing a hierarchical Bayesian network model that consists of failure propagation and failure behavior layers. In 

the failure propagation layer, failure probability, reliability, failure rate, mean time to failure with respect to service 

time are estimated. Moreover, the primary failure contributors to the support structure are determined. In the failure 

behavior layer, correlations among failure modes are investigated, based on which, impacts of each failure mode on 

others are clarified. The results of this study are verified by comparing with what was concluded by the fault tree 

analysis. Recommendations such as the maintenance interval of the support structure should be less than 101 days 

within the service time of nine years and operational skill training for operators are concluded. 
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1. Introduction 

As a promising type of renewable energy, wind 
energy has been installed tremendously 
worldwide during the last decade (Burke and 
Stephens 2018). Moreover, mandatory plans of 
increasing wind energy capability confirming the 
significant growth in the future, e.g. European 
Union (EU) plans to raise the wind energy 
proportion up to 31.6%-48.7% in 2050, motivated 
by which more than 3 GW offshore wind energy 
capacity has been installed within 2017 around 
EU (Liobikienė and Butkus 2017).  

Offshore wind energy benefits from flexible 
installation, environment-friendly, higher and 
constant wind speed, space-saving, and more 
workdays being regarded as the succedaneum of 
onshore wind energy (Bagbanci et al. 2012). A 
practical case is that Chinese government is 
planning to develop approximately 4 GW 
offshore wind energy capacity before 2020 (Lin et 
al. 2016). 

However, the advantage of applying offshore 
wind energy relies mainly on the high reliability 
and availability of offshore wind turbines (OWTs), 
for weather windows of maintenance can be 
difficult to obtain especially in winter. 
Unfortunately, OWTs tend to fail more in 
frequency than onshore facilities as consequences 
of harsh and extreme sea conditions, system 
complexity, and more complex functions (Santos 
et al 2015a). Frequent failures and maintenance 

processes lead to low availability of OWTs and 
give rise to vast economy loss of wind farms 
(Santos et al 2015b; Kang et al. 2019).  

On this basis, efforts been made to carry out 
reliability analysis of OWTs at both global and 
system levels in order to secure their high 
reliability and availability. Marquez et al. (2016) 
identified crucial components and factors that 
result in malfunctions of a wind turbine by fault 
tree (FT) and binary decision diagram (BDD) 
joint method, and concluded that the yaw motor is 
the most failure-prone component and that 
abnormal vibration is the commonest contributor 
to wind turbine malfunctions. Arabian-
Hoseynabadi et al. (2010) employed failure mode 
and effects analysis (FMEA) method to ascertain 
the most critical failure mode of a typical 2MW 
indirect drive variable speed wind turbine, which 
is materials failure among others. Bharatbhai 
(2015) applied failure mode effects and criticality 
analysis (FMECA) identified key components 
susceptible to failure are turbine blades and 
lubrication system. Kang et al. (2019) analyzed 
the reliability of a floating offshore wind turbine 
(FOWT) by fault tree analysis (FTA) method and 
pointed out that failure rate of the FOWT is 7.3 
failures per year, which is approximately 13% 
larger than what was derived from data collected. 
Zhang et al. (2016) conducted a reliability 
analysis of a FOWT using dynamic FTA, 
indicated that the maintenance interval of the 
FOWT should be less than 24 days.  
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Concerning the reliability analysis for wind 
turbines systems, Liniger et al. (2018) assessed 
the failure rate of the pitch system of a wind 
turbine by simulation methods. Li et al. (2019) 
evaluated the reliability of gearbox of a wind 
turbine by degradation-Hidden-Markov model 
and concluded that the reliability of wind turbine 
bearings decreases sharply after the service period 
of 108 months. Tazi et al. (2017) developed a 
hybrid cost-FMEA to analyze the reliability of 
FOWTs gearbox and blades system. Fischer et al. 
(2015) analyzed the failure behavior of converters 
and revealed that insufficient protection of 
converters has a strong impact on malfunctions of 
the generator. Kang et al. (2016) analyzed the 
reliability of the support structure of a FOWT by 
FTA method and the results indicate that extreme 
weather conditions are the main contributors to 
malfunctions of the support structure.  

Currently, however, reliability analysis of 
FOWTs and their systems are concentrated on 
failure propagation with two tasks: failure rate 
prediction and crucial components identification. 
Specifically, FTA is good at tracing paths of 
failures propagation within the system (e.g. 
component failures affect sub-systems and then 
result in system malfunctions) while failure 
behaviors are neglected e.g. failure modes and 
correlations among them. The opposite is true for 
the FMEA and the upgraded FMECA (only 
implemented in failure behavior aspect and the 
failure propagation is neglected). To this end, this 
paper developed a hierarchical Bayesian network 
(HBN) model comprising both failure 
propagation and failure behavior layers to analyze 
the reliability of the support structure of the 
FOWT used in Kang et al. (2019). On this basis, 
reliability indexes, weak links of the FOWT are 
ascertained in the failure propagation layer. 
Correlations among failure modes are analyzed in 
the failure behavior layer. The software GeNIe in 
version 2.1 is employed to construct the HBN 
model in this study.  

The rest of this paper is organized as follows. 
Section 2 introduces the methodology of 
constructing the HBN model. Results are shown 
in section 3. Conclusions in Section 4. 

2. The Methodology of the HBN Model  

Bayesian networks (BNs) are powerful tools for 
reliability modeling, analysis, and estimation. The 
capability of dependency analysis identifies BNs 
as useful tools in reliability engineering. BNs are 
comprised of nodes and edges that represent 
variables and their causal relations, respectively 
(Langseth and Portinale 2007). The detailed 
methodology of BNs can be reached in Bobbio et 
al. (2001). HBNs are special BNs developed for 
representing hierarchical systems, which typically 
have three forms: nested representation, tree 

representation, and standard representation 
(Gyftodimos and Flach 2002). The dependences 
between nodes in a HBN can be represented by a 
corresponding standard BN (known as standard 
representation form) after applying the flatten 
algorithm. The inference of a HBN follows the 
same way as a standard BN in the standard 
representation form of a HBN. An example of 
HBN is illustrated in Fig. 1. 
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Fig. 1. An example of HBN 

 
The HBN model of the support structure in this 

study consists of two layers: the failure 
propagation layer and the failure behavior layer. 
The sub-BN model in the failure propagation 
layer analyzes the failure mechanism of the 
support structure like the way how a failure of a 
component leads to certain sub-systems fails and 
then results in the support structure malfunctions. 
The failure data and the fault tree logic established 
by Kang et al. (2019) are employed in the failure 
propagation layer of the constructed HBN model. 
The main tasks of the failure propagation layer are 
to predict reliability characteristics of the support 
structure and identify critical factors lead to 
support structure malfunctions. 

Furthermore, the failure behavior layer is 
created to model the behavior of the support 
structure malfunctions. 31 basic factors that give 
rise to malfunctions of the support structure are 
classified into four categories namely structural 
defect or bad design (SDBD), extreme 
environment (EE), abnormal operations (AO), 
and materials damage and degeneration (MDD). 
Eight failure modes were considered in this study 
namely lines broken (LB), tower failure (TF), 
tower collapse (TC), foundation failure (FF), 
system unbalance (SU), system movement (SM), 
abnormal vibration (AV), and abnormal functions 
(AF). 

The support structure is fundamental but the 
largest assembly of the FOWT typically consists 
of a tower, a floating foundation, and a mooring 
system (Uzunoglu et al. 2016). The tower resists 
force (and movement) of the FOWT, while the 
mooring system and the floating foundation 
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provide stable buoyancy and the exact fixation to 
the FOWT. The HBN model in the standard 
representation form of the support structure is 
illustrated in Fig. 2. For model clarity reason, the 
basic nodes in the failure propagation layer are 
represented by alternative symbols in the failure 
behavior layer e.g. B02  and B02  are the same node 
in the real HBN model. The conditional 
probability tables of nodes in the failure behavior 
layer are listed in Appendix A and nodes 
definition of the HBN model is shown in 
Appendix B. 
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Fig. 2. The HBN model in standard representation form of 

the support structure (details are listed in Appendix A and B) 

3. Results 

3.1. In the failure propagation layer 

The predicted reliability of the support structure is 
approximately 0.03 after one year service with the 
mean time to failure (MTTF) 2601h. As a 
comparison, the MTTF was concluded to be 
2680h by FTA and which is reported larger than 
that from data collection (Kang et al. 2019). The 
forecasted reliability, failure probability, failure 
rate, and MTTF of the support structure are 
plotted in Figs. 3 and 4, respectively. The 
forecasted MTTF indicates that the maintenance 
interval of the support structure should be less 
than 101 days during nine years’ service. 

The failure rate curve with respect to time was 
fitted by Gaussian function (with the lowest root 
mean squared error, 0.002), see Eq. (1). Floating 
foundation is more reliable than mooring system 
and tower. For instance, on the initial day of 
working, the reliability of floating foundation, 

mooring system, and tower are 0.99988, 0.99973, 
and 0.99965, respectively. 

2 211.41 0.92
( ) ( )

46.27 1.233.6 0.05
t t

FR e e

- -
- -

= -        (1) 

In which, FR and t are failure rate and service time 
of the support structure. 

 
Fig. 3. The predicted reliability and failure probability of the 

support structure 

 
Fig. 4. The forecasted failure rate and MTTF of the support 
structure 

The tower contributes with 36% of failures of 
the support structure, followed by mooring 
system (34%) and floating foundation (30%). 
Tower malfunctions are mostly caused by tower 
collapse (the possibility of which is 83%). 
Mooring lines broken, results from abnormal 
stress, give rise to more than 60% mooring 
systems failures. Dropped object hits floating 
foundation acts as the most crucial event of 
floating foundation malfunctions which 
contributes about 89% failures to the floating 
foundation. The primary contributors to support 
structure malfunctions are displayed in Fig. 5.  

 
Fig. 5. The primary contributors to support structure 
malfunctions 
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With the analysis results aforementioned, a 
precise and timely weather forecast is 
recommended for preventing the support structure 
malfunctions caused by harsh environmental 
conditions e.g. strong waves and storms. 
Preventive actions e.g. clear excessive objects on 
the floating foundation and checking loose 
structures of the support structure may be 
executed in advance according to the outcomes of 
the weather forecast. Meanwhile, abnormal 
working conditions like abnormal stress call for 
reinforcement of the strength and preserve larger 
design margin of mooring lines in the design 
stage. 

3.2. In the failure behavior layer 

In the failure behavior point of view, predicted 
probability of system unbalance is some 0.33 at 
the end of the first year, followed by abnormal 
functions (0.3), system movement (0.25), tower 
collapse (0.24), foundation failure (0.23), 
abnormal vibration (0.23), lines broken (0.21), 
and tower failure (0.17).  

Abnormal operation is a chief factor leads to 
stoppages of the support structure, the probability 
of which is 0.56 under the condition of system 
failure, followed by structural defect or bad 

design (0.49), materials damage and degeneration 
(0.31), and extreme environment (0.06). 

Hence, having sensors to monitor vibration 
signals of crucial parts of the support structure is 
highly recommended. Besides, other measures as 
reinforcing the strength of mooring lines and 
clean superfluous objects on the floating 
foundation are also suggested (agree with that 
what have been concluded in the failure 
propagation layer). Redesign weak parts of the 
support structure is also an unneglectable means 
to secure the support structure functioning. 
Besides, operational skill training and ordering 
standard operation procedures are required 
according to the results of the analysis. 

BNs hold advantages in modeling and 
analyzing the dependence of systems by their 
capability of prediction and diagnosis support 
information propagation capabilities, also known 
as information updating. Based on the HBN 
model, correlations among failure modes are 
investigated and the results are listed in Fig. 6, in 
which the value in each cell represents the 
posterior probability of a failure mode with 
respect to another e.g. 0.52 in Fig. 6 denotes the 
probability of system unbalance (SU) is 0.52 
under the condition that the failure mode system 
movement (SM) is observed, mathematically 
represented by { } 0.52SMP SU true true= = = .

 

 
LB TB SM FB AV TC SU AF  Average  Rank 

LB 1 0.28 0.41 0.36 0.44 0.38 0.49 0.42  0.473  1 

TB 0.38 1 0.38 0.34 0.41 0.37 0.48 0.42  0.473  1 

SM 0.34 0.26 1 0.38 0.46 0.37 0.52 0.41  0.468  3 

FB 0.34 0.26 0.42 1 0.44 0.36 0.49 0.42  0.466  4 

AV 0.35 0.26 0.43 0.38 1 0.37 0.5 0.42  0.464  5 

TC 0.33 0.26 0.39 0.34 0.4 1 0.47 0.4  0.449  6 

SU 0.31 0.25 0.4 0.34 0.4 0.35 1 0.4  0.431  7 

AF 0.29 0.24 0.34 0.32 0.38 0.32 0.44 1  0.416  8 

OV 0.21 0.17 0.33 0.24 0.23 0.27 0.25 0.3  —  — 

 OV: Predicted probabilities of failure modes 

Fig. 6. The results of correlation analysis among failure modes of the support structure 

 

According to the results of the aforementioned 
correlation analysis, the following conclusions are 
reached: 

(1) All failure modes of the support structure 
have a positive (on the numerical standpoint) 
impact on others since failure probability of a 
failure mode will increase more or less when other 
failure modes happens e.g. the predicted 
probability of mooring lines broken is 0.21, 

which, however, increased to 0.35 given that 
abnormal vibration was observed. 

(2) Mooring lines broken and tower failure are 
top failure modes that affect other failure modes 
followed by system movement, foundation 
failure, abnormal vibration, tower collapse, 
system unbalance, and abnormal functions. 
However, impacts vary slightly (between 0.166 
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and 0.223). Hence, in engineering cases all failure 
modes are recommended to be considered.  

(3) System unbalance is the frailest failure 
mode of the support structure, which is influenced 
strongly by others. On the contrary, tower failure 
is the most robust failure mode. Among all failure 
modes, System unbalance is prominently 
impacted by system movement and abnormal 
vibration. 

4. Conclusions 

A hierarchical BN model consisting of failure 
propagation and failure behavior layers was 
developed for analyzing the reliability of the 
support structure of a floating offshore wind 
turbine.  

The predicted reliability and corresponding 
MTTF suggest that the maintenance interval of 
the support structure should be less than 101 days 
within the service time of nine years. The primary 
failure contributors to the support structure 
malfunctions such as tower collapse caused by 
strong waves and storms were determined 
according to the results of the HBN model. 
Additionally, in the failure behavior layer, system 
unbalance is recognized as the commonest failure 
mode of the support structure followed by 
abnormal functions, system movement, tower 

collapse, foundation failure, lines broken, and 
tower failure. On these bases, measures of 
ensuring safe operation and high reliability of the 
support structure were recommended. 

Correlations among failure modes were 
investigated in the failure behavior layer of the 
HBN model. Impacts of each failure mode on 
others were determined for demonstrating a deep-
going understanding of failure behaviors of the 
support structure. 

However, the correlation analysis in this study 
focuses mainly on failure modes at an elementary 
level, model deeply correlations among failure 
modes as well as among components are expected 
to be implemented in the future study. 
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Appendix A. The Conditional Probability Tables of Nodes in the Failure Behavior Layer 

SDBD T F 

EE T F T F 

AO T F T F T F T F 

MDD T F T F T F T F T F T F T F T F 

LB 
T 0.9 0.7 0.8 0.6 0.4 0.2 0.3 0.1 0.8 0.6 0.7 0.5 0.3 0.1 0.2 0 

F 0.1 0.3 0.2 0.4 0.6 0.8 0.7 0.9 0.2 0.6 0.3 0.5 0.7 0.9 0.8 1 

TF 
T 0.7 0.6 0.6 0.5 0.3 0.2 0.2 0.1 0.6 0.5 0.5 0.4 0.2 0.1 0.1 0 

F 0.3 0.4 0.4 0.5 0.7 0.8 0.8 0.9 0.4 0.5 0.5 0.6 0.8 0.9 0.9 1 

TC 
T 0.9 0.7 0.8 0.6 0.4 0.3 0.4 0.2 0.7 0.5 0.6 0.4 0.3 0.1 0.2 0 

F 0.1 0.3 0.2 0.4 0.6 0.7 0.6 0.8 0.3 0.5 0.4 0.6 0.7 0.9 0.2 1 

FF 
T 0.8 0.5 0.7 0.4 0.5 0.2 0.4 0.1 0.7 0.4 0.6 0.3 0.4 0.1 0.3 0 

F 0.2 0.5 0.3 0.6 0.5 0.8 0.6 0.9 0.3 0.6 0.4 0.7 0.6 0.9 0.7 1 

AV 
T 1 0.6 0.9 0.5 0.6 0.2 0.5 0.1 0.9 0.5 0.8 0.4 0.5 0.1 0.4 0 

F 0 0.4 0.1 0.5 0.4 0.8 0.5 0.9 0.1 0.5 0.2 0.6 0.5 0.9 0.6 1 

AF 
T 0.8 0.6 0.5 0.3 0.6 0.4 0.3 0.1 0.7 0.5 0.4 0.2 0.5 0.3 0.2 0 

F 0.2 0.4 0.5 0.7 0.4 0.6 0.7 0.9 0.3 0.5 0.6 0.8 0..5 0.7 0.8 1 

SU 
T 1 0.7 0.9 0.6 0.7 0.4 0.6 0.3 0.7 0.4 0.6 0.3 0.4 0.1 0.3 0 

F 0 0.3 0.1 0.4 0.3 0.6 0.4 0.7 0.3 0.6 0.4 0.7 0.6 0.9 0.7 1 

SM 
T 0.9 0.5 0.9 0.5 0.6 0.2 0.6 0.2 0.7 0.3 0.7 0.3 0.4 0 0.4 0 

F 0.1 0.5 0.1 0.5 0.4 0.8 0.4 0.8 0.3 0.7 0.3 0.7 0.6 1 0.6 1 

(i) LB: Lines Broken; TB: Tower failure; TC: Tower Collapse; FB: Foundation failure; SU: System Unbalance; SM: System 

Movement; AV: Abnormal Vibration; AF: Abnormal Functions. 
(ii) SDBD: Structural Defect or Bad Design; EE: Extreme Environment; AO: Abnormal Operations; MDD: Materials Damage 

and Degeneration. 

(iii) T: True; F: False. 
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Appendix B. Nodes Definition of the Hierarchical BN 

Code Events Layer Code Events Failure Rates (h-1) 

A01 Mooring system failure 

FPL 

B01 Human error 6.00E-6 

A02 Tower malfunctions B02 Resonance 5.00E-6 

A03 Floating foundation failure B03 Faulty welding of tower 7.00E-6 

A04 Devices failure B04 Material fatigue 1.10E-5 

A05 Extreme sea condition B05 Pillar damage 5.00E-6 

A06 Collapse due to environment B06 Capsize 1.00E-6 

A07 Hit by dropped objects B07 Anchor failure 1.80E-5 

A08 Watertight fault B08 Poor operation environment 7.80E-5 

A09 Other devise failure B09 
Insufficient emergency 

measurement 
1.00E-6 

A10 Pipe joint failure B10 Strong wind/wave 5.00E-5 

A11 Fairlead failure B11 Lightning Strike 7.00E-6 

A12 Mooring lines broken B12 Storm 5.50E-5 

A13 Mooring line breakage B13 Typhoon 1.00E-4 

A14 Mooring lines wear B14 Planes crash 1.00E-6 

A15 Abnormal mooring line B15 Biological collision 5.00E-6 

SDBD Structural Defect or Bad Design 

FBL 

B16 Inefficient detection 8.65E-6 

EE Extreme Environment  B17 Pipe joint corrosion 1.30E-5 

AO Abnormal Operations B18 Pipe joint weld defect 3.00E-6 

MDD 
Materials Damage and 

Degeneration 
B19 Pipe joint fatigue 3.00E-6 

LB Lines Broken B20 Fairlead corrosion 1.00E-5 

TF Tower Failure B21 Fairlead fatigue 1.70E-5 

SU System Unbalance B22 Transitional chain wear 1.01E-5 

TC Tower Collapse B23 Friction chain wear 6.93E-6 

FF Foundation Failure B24 Mooring winch failure 8.00E-6 

AV Abnormal Vibration B25 Buoys friction chain wear 4.19E-6 

SM System Movement B26 
Anchor pickup device 

damage 
5.56E-6 

AF Abnormal Functions B27 Abnormal stress 4.07E-5 

FPL: Fault Propagation Layer; 

FBL: Failure Behavior Layer. 

B28 Invalid maintenance 3.78E-5 

B29 Mooring lines wear 1.60E-5 

B30 Mooring lines fatigue 1.70E-5 

B31 Mooring lines corrosion 5.38E-6 
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